Hyperspectral Image Denoising with a Combined Spatial and Spectral Weighted Hyperspectral Total Variation Model
نویسندگان
چکیده
Hyperspectral image (HSI) denoising is a prerequisite for many subsequent applications. For an HSI, the level and type of noise often vary with different bands and spatial positions, which make it difficult to effectively remove noise while preserving textures and edges. To alleviate this problem, we propose a new total-variation model. The main contribution of the proposed approach lies in that the adaptive regularization terms in both the spatial and the spectral dimensions are designed separately and then combined into a unified framework. The 2 separate regularization terms allow a better description of the intrinsic nature of the original HSI data and can simultaneously penalize the noise from both the spatial and spectral perspectives. The designed weights for the regularization terms are positively correlated with the magnitude of the noise intensity and negatively correlated with the signal variation; thus, the original signal can be accurately retained and the noise can be effectively suppressed. To efficiently process the HSI, which appears as a huge data cube, a new optimization algorithm based on the alternating direction method of multipliers (ADMM) procedure is proposed to solve the new model. Experiments using HYDICE and AVIRIS images were conducted to validate the effectiveness of the proposed method. Résumé. Hyperspectrale l’image (HSI) débruitage est une condition préalable pour de nombreuses applications ultérieures. Pour un HSI, le niveau et le type de bruit varie souvent avec différents groupes et positions spatiales, ce qui rend difficile d’éliminer efficacement le bruit tout en préservant les textures et les bords. Pour pallier ce problème, nous proposons un nouveau modèle de variation totale. Les principales contributions de l’approche proposée mensonge dans la conception des termes de régularisation adaptative dans les deux dimensions spatiales et spectrales, et en les combinant dans un cadre unifié. Les deux termes de régularisation séparés permettent une meilleure description de la nature intrinsèque des données HSI original et peuvent pénaliser simultanément le bruit à la fois des perspectives spatiales et spectrales. Les poids conçus pour les termes de régularisation sont en corrélation positive avec la grandeur de l’intensité du bruit et corrélation négative avec la variation de signal; ainsi, le signal d’origine peut être retenu avec précision et le bruit peut être efficacement supprimée. Pour traiter efficacement le HSI, qui apparaı̂t comme un énorme cube de données, un nouvel algorithme d’optimisation basé sur la méthode de direction alternée de multiplicateurs «alternating direction method of multipliers» (ADMM) procédure est proposée pour résoudre le nouveau modèle. Des expériences utilisant des images AVIRIS et HYDICE et ont été menées afin de valider l’efficacité de la méthode proposée.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملHyperspectral Image Denoising with Cubic Total Variation Model
Image noise is generated unavoidably in the hyperspectral image acquision process and has a negative effect on subsequent image analysis. Therefore, it is necessary to perform image denoising for hyperspectral images. This paper proposes a cubic total variation (CTV) model by combining the 2-D total variation model for spatial domain with the 1-D total variation model for spectral domain, and t...
متن کاملHyperspectral Image Denoising Employing a Spectral-Spatial Adaptive Total Variation Model
The amount of noise included in a hyperspectral image limits its application and has a negative impact on hyperspectral image classification, unmixing, target detection, and so on. In hyperspectral images, because the noise intensity in different bands is different, to better suppress the noise in the high-noise-intensity bands and preserve the detailed information in the low-noise-intensity ba...
متن کاملHyperspectral Image Denoising by using Hybrid Thresholding Spatio Spectral Total Variation
This paper introduces a hyperspectral denoising algorithm hinged on hybrid spatio-spectral total variation. The denoising issue have been hatched as a mixed noise diminution issue. A prevalent noise model has been pondered which reckon for not only Gaussian noise but also sparse noise. The inborn composition of hyperspectral images has been manipulated by using 2-D total variation along the spa...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016